Cationic Silicon Nanocrystals with Colloidal Stability, pH‐Independent Positive Surface Charge and Size Tunable Photoluminescence in the Near‐Infrared to Red Spectral Range
نویسندگان
چکیده
In this report, the synthesis of a novel class of cationic quaternary ammonium-surface-functionalized silicon nanocrystals (ncSi) using a novel and highly versatile terminal alkyl halide-surface-functionalized ncSi synthon is described. The distinctive features of these cationic ncSi include colloidal stability, pH-independent positive surface charge, and size-tunable photoluminescence (PL) in the biologically relevant near-infrared-to-red spectral region. These cationic ncSi are characterized via a combination of high-resolution scanning transmission electron microscopy with energy-dispersive X-ray analysis, Fourier transform infrared, X-ray photoelectron, and photoluminescence spectroscopies, and zeta potential measurements.
منابع مشابه
Silicon Nanocrystals: Cationic Silicon Nanocrystals with Colloidal Stability, pH‐Independent Positive Surface Charge and Size Tunable Photoluminescence in the Near‐Infrared to Red Spectral Range (Adv. Sci. 2/2016)
متن کامل
Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange
Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation ...
متن کاملTunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals
Luminescent silicon nanocrystals (Si NCs) have attracted tremendous research interest. Their size dependent photoluminescence (PL) shows great promise in various optoelectronic and biomedical applications and devices. However, it remains unclear why the exciton emission is limited to energy below 2.1 eV, no matter how small the nanocrystal is. Here we interpret a nanosecond transient yellow emi...
متن کاملSynthesis of boron and phosphorus codoped all-inorganic colloidal silicon nanocrystals from hydrogen silsesquioxane.
We present a new route for mass-production of B and P codoped all-inorganic colloidal Si nanocrystals (NCs) from hydrogen silsesquioxane (HSQ). Codoped Si NCs are grown in glass matrices by annealing mixture solutions of HSQ and dopant acids, and then extracted from the matrices by hydrofluoric acid etching. The free-standing NCs are dispersible in methanol without any surface functionalization...
متن کاملHydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices
Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The ...
متن کامل